Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Short Term Load Forecasting Using Neural Network Trained with Genetic Algorithm & Particle Swarm Optimization

Short term load forecasting is very essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of power system. Artificial neural networks have long been proven as a very accurate non-linear mapper. ANN based STLF models generally use Back propagation algorithm which does not converge optimally & requires much longer time for training, which mak...

متن کامل

Load Forecasting based photovoltaic power using New Particle Swarm Neural Networks Model

-The load forecasting is required in power system management and ensures electricity providing for customers. Photovoltaic power forecasting aims to reduce the fuel consumption and play important role in the supervisory control for a hybrid energy system. This paper presents the application of new model using neural networks (NN) and Particle Swarm Optimization (PSO) to determine the net load f...

متن کامل

application of an improved neural network using cuckoo search algorithm in short-term electricity price forecasting under competitive power markets

accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. however, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2020

ISSN: 1996-1073

DOI: 10.3390/en13081879